
July 2010	 FoxRockX� Page 19

I've been hearing about business objects since some 
time in the mid-1990's. Not long after VFP added 
object-orientation, people started recommending 
that business logic be encapsulated into a set of 
separate objects. Intellectually, I understood the 
idea, but the examples I saw never really seemed 
to deliver on the promise. The standard example 
involved a customer object with the customer 
data entry form calling on that business object to 
do things like calculate sales tax. While I could see 
how to build that kind of object, it didn't seem all 
that important.
Several years ago, I started working on a highly 
graphical application, where the forms don't look 
like standard data entry forms, the business objects 
needed to represent real, physical objects, and where 
there wasn't a simple mapping between business 
objects and forms. As I worked on this application, 
especially as requirements changed, the power of 
business objects really became apparent to me. 

Over the next few issues, I'm going to take a 
fresh look at business objects from that perspective. 
I'll use a highly graphical application, a Sudoku 
game, to demonstrate. 

What are business objects?
The first FoxPro book I encountered that talked 
about business objects was "The Visual FoxPro 3 
Codebook" by Y. Alan Griver. Interestingly, though 
it provided business object classes, nowhere did it 
actually define the term "business object." That book 
came out in 1995, but we're not doing much better 
at actually defining what we mean by "business 
object" today. Here are a few definitions of business 
objects found on the web.

From Wikipedia:
Business objects are objects in an object-oriented 
computer program that represent the entities in 
the business domain that the program is designed 
to support.

From PCMag.Com's online encyclopedia:
A broad category of business processes that are 
modeled as objects. A business object can be as 
large as an entire order processing system or a 
small process within an information system. 

From ObjectMatter.Com:
An object that is modeled after a business 
concept, such as a person, place, event, or process. 
Business objects represent real world things such 
as employees, products, invoices, or payments.

The first two definitions are more circular than 
helpful. The third, though, offers some idea of 
what we mean when we describe something as a 
"business object."

Let's expand on that by looking at what we 
expect a business object to do.

First, we want it to contain data that describes 
the real world thing represented. For example, 
a product business object might have properties 
for the product code, the product description, the 
unit price of the product, and so forth. To database 
developers, this sounds like a record, not an object. 
Where it varies, though, is that a business object's 
properties need not be scalar. That is, it can contain 
arrays and collections, as well as references to other 
objects.

Second, it should operate on that data in ways 
that model real world activities. For example, an 
employee business object might include a method 
to compute the number of days of service of that 
employee.

So a business object differs from a record 
representing the same object in two ways, the 
ability to contain non-scalar data and the inclusion 
of methods that operate on the business object. 

How does a business object differ from 
any other object? It doesn't really, except that it 
normally represents some real-world entity, not 
just a programmatic abstraction.

Why business objects?
The standard explanation given for why you should 
use business objects is that you should "separate 
interface from implementation." That is, the logic 
behind the application (the implementation or 
"engine") should be separate from the code used for 
display (the interface). But that's really just another 
way of saying that you should use business objects. 
It doesn't explain why.

Understanding Business 
Objects, Part 1
A well-designed set of business objects forms the engine for your application, but learning to create 
and use business objects has been a struggle for this author.

Tamar E. Granor, Ph.D.



Page 20	 FoxRockX� July 2010

What are some real-world, practical reasons for 
using business objects?

The most important is that it lets you put code 
in one place. That method to compute the number 
of days of service for an employee might be needed 
in several places in your application (the employee 
maintenance form, a seniority report, and so forth). 
With an employee business object, you put it there, 
and you always know where to find it. Without 
business objects, you end up writing the code for the 
employee maintenance form, then writing it again 
(or cloning it) for the seniority report, and again 
for the next use. (Yes, you might realize that you're 
duplicating code and write a function instead. I'd 
argue that, in some sense, such a function is part of 
a business object, even though it's not technically 
inside an object.)

Another related reason to use business objects is 
that it encourages you to put all the business logic in 
one place. This is the flip side of having a particular 
piece of code only once. When business rules are 
implemented in the user interface, logic tends to be 
scattered all over the place. Then, when you need to 
figure out how something works, or why it works 
as it does, you need to hunt for it. When business 
logic is restricted to business objects, all the code 
that relates to a particular process is in one place 
(or, more likely, a few places, if you have several 
cooperating objects). 

The practical reason I most often hear for using 
business objects is that it lets you vary the user 
interface or the back-end database without having 
to rewrite code. While the forms in a desktop 
application aren't usually replaced wholesale once 
the application ships, more and more applications 
do need to run both on the desktop and on the 
web, or are migrating from the desktop to the web. 
Similarly, there may be situations where it makes 
sense to change the database used for an application. 
In particular, if security or reliability considerations 
change, or the amount of data involved grows more 
than expected, moving from VFP native data to a 
SQL back-end may be called for. In both of these 
cases, having business logic in business objects 
makes the transition much easier than if business 
logic is tied tightly to the user interface.

The problem with the usual 
examples
Though I understood the reasons for using business 
objects, I never really felt comfortable with them. 
Using them often felt like it just added a layer of 
indirection to developing applications. 

Part of the problem was the way they were 
presented to the VFP community. Our first exposure 
to business objects came from the Codebook 
framework and the other frameworks that built on 
that one. Perhaps because it was the first attempt 

at using business objects with VFP, the approach is 
somewhat clumsy and too tightly integrated with 
the user interface.

Codebook's "base" business object class is 
a subclass of the Container class, a visual class. 
In fact, business objects are visible in Codebook 
applications and contain the controls used to work 
with a given business object. I think it was this 
aspect of Codebook's approach that made it hard 
for me to see why I'd bother.

Codebook's base business class also wraps up 
a lot of database functionality, providing methods 
to move through a set of records represented by 
business objects, as well methods for standard 
database functionality, like creating, saving and 
deleting records. It's designed to make it possible 
to work with local VFP data and remote data 
interchangeably. While this is, of course, a good 
thing, in some ways, it also makes the class seem like 
a poor cousin to VFP's native database functionality. 
That's especially true if you're working exclusively 
with native VFP data.

Several other VFP frameworks (including 
Visual FoxExpress, known as VFE) are based on 
the Codebook model, and perpetuate the idea of a 
container for a business object (though VFE does 
not expect you to put any controls in the business 
object). The Visual MaxFrame Pro framework, 
developed independently (though likely influenced 
by Codebook) takes the same approach.

Eventually, though, the VFP community 
realized that tying business objects to user interface 
was a bad idea, and later frameworks separated 
the two, subclassing the "base" business class from 
non-visual classes. For example, the Mere Mortals 
framework, though it's a descendant of Codebook, 
uses a non-visual class for its base business class. 
The focus on managing data remained, of course.

A major idea in all these frameworks, though, 
is that you create business objects that contain the 
business logic of your application and then drop 
these classes onto forms. In Codebook, a form has 
a single business object, which contains not only 
the business logic, but also the necessary controls. 
In VFE, you add business objects to presentation 
objects; the presentation objects contain the actual 
controls and are placed on forms. Mere Mortals can 
handle multiple business objects on a form, but still 
thinks of them primarily as something related to 
the form as a whole, not to specific contents of the 
form.

How I got it
The examples that first helped business object 
concepts gel for me didn't actually refer to "business 
objects." Around VFP 6, the "Xbase tools" that 
come with VFP (tools written in VFP; they're now 
part of VFPX) started to use a model of separate 



July 2010	 FoxRockX� Page 21

interface and implementation objects. For example, 
the Coverage Profiler includes a cov_engine class 
(the implementation object) and a cov_frame class 
(the user interface). The idea was that you could 
subclass the two separately, so you could change 
either the behavior or the way it looked to the user 
or both independently. 

This idea made enough sense to me that I soon 
applied it to someone else's work. Doug Hennig 
published an article in the January, 2000 FoxTalk 
showing how to make your applications remember 
things like where a window was last positioned 
and what record it was looking at. Doug set it 
up as a single class hierarchy, with subclasses to 
handle variations like where to store the data to be 
remembered and what data was to be stored. When 
I decided to use the technique, I found that there 
were two things I wanted to vary independently, 
where to store the data and what to store. So I 
refactored Doug's class hierarchy to create two 
separate hierarchies, one for the "persistence 
engine" that keeps track of what data to remember 
and handles types conversions and so forth, and a 
separate one to do the actual storage and retrieval, 
that is, to be the interface (though not a user interface 
in this case) to a storage device. (I wrote a little bit 
about these classes in the November, 2002 issue of 
FoxPro Advisor.)

Even after that exercise, though, the kind of 
business objects I found in all the frameworks 
still felt clumsy. I began work on my own 
framework, and included business objects built 
from the CursorAdapter base class. Like the other 
frameworks, my business classes incorporate 
methods for moving through a data set and handling 
basic record operations like new, save and delete. 
But using those classes still felt like programming 
with gloves on.

Then, a really unusual application landed on 
my desk, a network management system (NMS) 
used to monitor and manage multiplexers in utility 
substations. The application, originally written in 
FoxPro 2.6 and ported to VFP 6, was well-designed 
but showing its age. The client wanted to maintain 
its functionality, but add a far more graphical front-
end while moving to VFP 9. 

The application addresses a network of nodes, 
with each node representing a substation. Within 
each node, there can be one or more shelves, which 
in turn contain circuit boards. Each circuit board 
has a bunch of settings that can be read or written 
through the application. The goal for the updated 
application was to show the networks and nodes 
graphically, while providing an easy way to edit 
the settings for a given circuit board. The new form 
representing the entire network (Network View, 
shown in Figure 1) shows each node in the network 
and allows the user to rearrange them to make 
sense, as well as to add connections between them 

(though the figure doesn't include any). The form 
representing a node (Node View, shown in Figure 
2) looks much like the actual hardware at the node, 
showing each shelf and each circuit board within. 
Only the form for the settings of a particular board 
(Card View, shown in Figure 3) looks anything like 
a conventional data entry form, but its contents and 
behavior are driven by meta-data. 

Figure 1. In this highly graphical application, Network View 
shows a summary for each node (substation). Nodes can be 
dragged to position them according to their actual relative 
locations. Color indicates status of the node. Lines can be 
added between nodes to represent actual connections between 
them.

More importantly, each of the forms needs 
access to information at multiple levels. Network 
View addresses the network as a whole and the 
individual nodes. Node View talks to a node, its 
shelves, and the boards they contain. Card View 
talks to an individual board, but also needs some 
shelf and node information.

Figure 2. Node View shows all the shelves and boards of one 
node. In this version, boards (also known as "cards") can be 
dragged from one slot to another.

When I began to work on the new forms, I 
started with the graphical aspects, using VFP's 
containers, shapes, lines and labels to construct 
the objects I'd need. Once I'd done that, I needed to 
find a way to connect the actual data to its graphical 
representations. 



Page 22	 FoxRockX� July 2010

The data is stored in a reasonably normalized 
set of tables. Four tables store the bulk of the 
information. Network contains a single record 
with network-level data. Node contains one record 
for each node in the network. Slot has one record 
for each board and Values has a record for each 
individual setting. 

This means that Network View represents a 
single record from Network and multiple records 
from Node; Node View contains data from one 
record in Node, from multiple records in Slot, 
and has some data from Values; and Card View 
represents multiple Values records with some data 
drawn from Slot and Node. It rapidly became clear 
that I'd need some kind of data structure to enable 
me to pull all the data for each form together. 

Enter business objects. I created a set of classes 
to hold the data and gave them methods to move 
the data in and out of the tables. So, when the user 
picked a network to work with, data from the 
tables was immediately moved into this hierarchy 
of objects. The forms talk only to the objects, never 
to the tables. 

Figure 3. Card View shows the settings for an individual circuit 
board; the pages, boxes within the pages and items within the 
boxes are all driven by meta-data.

As I got deeper into implementing all the 
required functionality, I found myself adding 
more and more methods to these classes to answer 
questions about the state of things or to allow the 
user to change the contents of the network. Once 
the client started working with the modified 
application, and requirements were changed or 
refined, these classes continued to change and 
grow. More importantly, implementing most of the 
changes turned out to be fairly simple. 

One major change was to provide a second, 
much less graphical, format for Network View 
(shown in Figure 4), intended primarily for use 
with large networks. Because the data in Network 
View was coming from business objects, and 
form methods were used to communicate with 
the business objects, creating this version was 
straightforward.

As this project was being completed, the 
client was preparing to introduce a new line of 
multiplexers that would need its own Network 
Management System. While many requirements 
for the new system were the same as the old, 
there were also a number of significant changes. 
Where the old multiplexers could handle 18 circuit 
boards each, the new ones have only 7 slots and a 
single board can stretch across 2 slots. In the old 
system, the application handles communication 
with the actual hardware. The new application 
would talk to another software layer that would 
handle communication with the hardware. The old 
multiplexers work with several different kinds of 
shelves, with a single node able to house several 
shelves. Using the new multiplexers, a node can 
contain only a single shelf and all shelves have the 
same architecture. However, the client wanted to 
preserve the possibility of multiple shelves in a 
node for the future. Clearly, Node View would be 
quite different in this version; Figure 5 shows the 
updated Node View. The client also wanted some 
changes in Network View and Card View, plus 
a new form, similar to Node View, to show the 
relationships between the nodes (see Figure 6).

Figure 5. In the new version of NMS, Node View has changed 
quite a bit, but the object model underneath is nearly the same 
as in the older version.

Figure 4. Creating this alternate version of Network View was a 
breeze, because all the data was drawn from business objects. 
Only the graphical portions had to change.



July 2010	 FoxRockX� Page 23

When we started adapting the updated NMS 
to create an NMS for the new multiplexers, the 
power of business objects became even more 
apparent. Using our existing code as a base, we 
were able to get a prototype of the new version up 
and running in just a few weeks, so the client could 
demonstrate it at a trade show. Because this was a 
brand new product for them and it was still under 
development as we were working, requirements 
changed quite a bit over time; again, the decision to 
use business objects meant that most changes were 
able to be handled quickly and easily. (In fact, as I 
was writing the white paper on which this article is 
based, I was working on major changes in one area 
of the object model. Even though this area needed 
two significant changes that were not anticipated 
in the original design, much of the code was able 
to be used unchanged, and changes to many other 

methods were small. As I've found throughout this 
project, the larger effort was more often figuring 
out what to change and how than writing the actual 
code.) 

Now, more than three years after taking over 
the initial project, this set of objects is second nature 
to me and it's hard to imagine that there could have 
been any other way to implement this system.

Designing and Implementing 
Business Objects
My experience with NMS taught me to think of 
business objects as the engine for my application, 
allowing forms to serve only as a conduit for the 
user. The ideas that felt so clumsy when looking 
at a standard database application become much 
clearer in a graphical setting where a particular ob-
ject could appear in many different forms.

In my next few articles, I'll explore another 
(simpler) application, and show how to decide 
what business objects to create, what to put into 
them and how to link them to the user interface. Fi-
nally, I'll look at making changes to an application 
and how business objects smooth the way.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s 
Solutions, LLC. She has developed and enhanced 
numerous Visual FoxPro applications for businesses and 
other organizations. She currently focuses on working with 
other developers through consulting and subcontracting. 
Tamar is author or co-author of ten books including 
the award winning Hacker’s Guide to Visual FoxPro, 
Microsoft Office Automation with VisualFoxPro and 
Taming Visual FoxPro’s SQL . Her latest collaboration 
is Making Sense of Sedna and SP2, coming out this year. 
Her books are available from Hentzenwerke Publishing 
(www.hentzenwerke.com). Tamar is a Microsoft Support 
Most Valuable Professional. In 2007, Tamar received the 
Visual FoxPro Community Lifetime Achievement Award. 
You can reach her at tamar@thegranors.com or through 
www.tomorrowssolutionsllc.com.

FoxRockX™(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor: Rainer Becker

Copyright © 2010 ISYS GmbH. This work is an independently produced pub­
lication of ISYS GmbH, Kronberg, the content of which is the property of ISYS 
GmbH or its affiliates or third-party licensors and which is protected by copyright 
law in the U.S. and elsewhere. The right to copy and publish the content is reserved, 
even for content made available for free such as sample articles, tips, and graphics, 
none of which may be copied in whole or in part or further distributed in any form 
or medium without the express written permission of ISYS GmbH. Requests for 
permission to copy or republish any content may be directed to Rainer Becker. 

FoxRockX, FoxTalk 2.0, FoxTalk and Visual Extend are trademarks of ISYS GmbH. All product names or services 
identified throughout this journal are trademarks or registered trademarks of their respective companies.

Figure 6. Mapping View is new in the most recent version of NMS. 
It shows the relationships between nodes. Thanks to the business 
objects underneath, it shares a lot of code with Node View. Both 
forms are subclassed from the same parent class.


